R3 1期 特別進学コース (ハイグレード)

就実高等学校

数 学

1 次の にあてはまる数、式を答えなさい。

(1) $\frac{3\sqrt{10}-\sqrt{5}}{\sqrt{2}} \times \frac{2+\sqrt{2}}{\sqrt{5}}$ を計算して簡単にすると である。

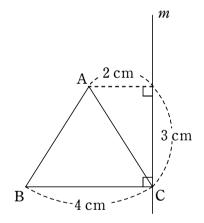
(2) $a=\frac{8}{15}$ のとき, $(6a-1)^2-9a(4a-3)$ の値は である。

- (4) ある中学校の全校生徒のうち 28 % が通学に自転車を利用している。また,通学に自転車を利用していない生徒のうち 75 % にあたる 81 人が電車を利用している。この中学校の生徒数は 人である。
- (5) 1, 2, 3, 4, 5, 6, 7 の7枚のカードがある。この7枚のカードから3枚を同時に取り出すとき、3枚のカードの数字の和が9以下である場合は全部で通りである。

(6) 【表1】は岡山県のある観測所における 2011 年から 2020 年までの 10 年間について、 それぞれの年の最高気温を記録したものである。また、【表2】はこの記録を度数分布 表にまとめたものである。中央値が含まれる階級の相対度数は である。

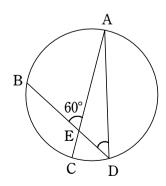
【表1】

年	最高気温(℃)	年	最高気温(℃)
2011	36.3	2016	37.4
2012	36.8	2017	36.3
2013	37.6	2018	38.1
2014	36.6	2019	36.9
2015	37.3	2020	38.2

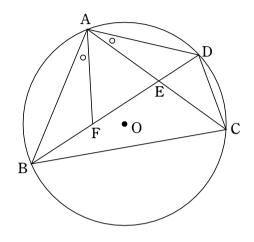

(気象庁ホームページより作成)

【表2】

階級(°C)	度数(年)
以上 未満	
38.0~38.5	2
37.5~38.0	1
37.0~37.5	2
$36.5 \sim 37.0$	3
36.0~36.5	2
計	10


(7) 右の図の \triangle ABC を,直線 m を回転の軸として 1 回転させてできる立体の体積は

 ${
m cm}^3$ である。



(8) 図のように, 円周上に 4 点 A, B, C, D があり, 線分 AC と線分 BD との交点を E とする。

 $\angle AEB = 60^{\circ}$, 点 C を含まない \widehat{AB} と, 点 A を含まない \widehat{CD} の長さの比が \widehat{AB} : $\widehat{CD} = 3:1$ のとき、 $\angle ADB$ の大きさは \bigcirc 。 である。

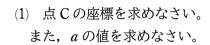
- **2** 図のように、円 O の周上に 4 つの点 A、B、C、D がある。線分 AC と線分 BD との交点を E とし、線分 BD 上に \angle CAD = \angle BAF となる点 F をとる。AB = 6 cm、BC = 8 cm、CD = 4 cm、AC = 7 cm のとき、次の問いに答えなさい。
- (1) △ABF と相似な三角形を答えなさい。また、線分 BF の長さを求めなさい。

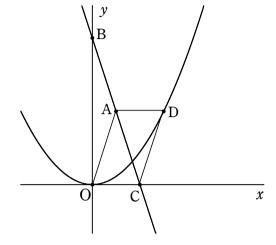
(2) $\triangle ABC \infty \triangle AFD$ を証明しなさい。

(3) AD = 4 cm のとき、線分 BD の長さを求めなさい。

3 あるカフェでは、ケーキの単品を1個400円、コーヒーの単品を1杯300円、ケーキ1個とコーヒー1杯のAセットを600円で売っています。ある日、ケーキ100個とコーヒー150杯を準備しました。

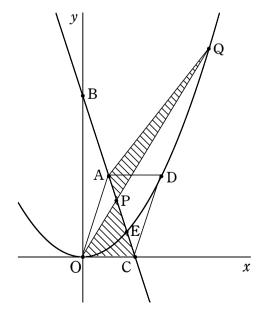
この日の午前,ケーキは単品でx個,コーヒーは単品でy杯売れて,Aセットは売れませんでした。この日の午後,ケーキはすべてAセットで売れ,コーヒーはAセットでも単品でも売れました。そして,この日準備したケーキとコーヒーはすべて売り切れました。

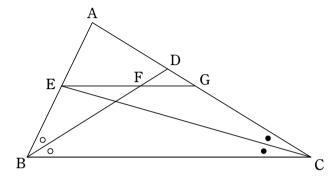

次の問いに答えなさい。ただし、消費税は考えないものとします。


(1) 午前のケーキとコーヒーの売上金額の合計を x と y を用いて表しなさい。

(2) 午後, A セットは何セット売れましたか。 *x* を用いて表しなさい。 また, 午後, コーヒーは単品で何杯売れましたか。 *x* と *y* を用いて表しなさい。

(3) この日,ケーキの単品とコーヒーの単品と A セットの売上金額の合計は午前が 37000 円,午後が 45000 円でした。このとき, x と y の値をそれぞれ求めなさい。


4 図のように、 $2 \le A(1, 3)$ 、B(0, 6) があり、直線 $AB \ge x$ 軸との交点を $C \ge t$ る。 四角形 AOCD が平行四辺形となるように点 D をとる。関数 $y = ax^2$ のグラフは点 D を通る。このとき、次の問いに答えなさい。



(2) 関数 $y=ax^2$ のグラフと直線 AB との交点を E とする。線分 AE 上に点 P をとり、直線 OP と関数 $y=ax^2$ のグラフとの交点のうち、点 O と異なる点を Q とする。 ただし、点 P は点 A と点 E のいずれにも一致しない。

 \triangle APQ の面積と \triangle COP の面積が等しいとき、点 Q の x 座標をすべて求めなさい。 ただし、考えた過程を書きなさい。

- **5** 図のように、 \triangle ABC があり、AB<AC である。 \angle ABC の 2 等分線と辺 AC との交点を D、 \angle ACB の 2 等分線と辺 AB との交点を E とする。また、点 E を 通り辺 BC に平行な直線を引き、線分 BD、辺 AC との交点をそれぞれ F、G と する。DG: GC = 1:5 であり、線分 CG の長さは線分 BE の長さよりも 15 cm 長い。DG = x cm とするとき、次の問いに答えなさい。
- (1) 線分 BE, EG の長さを それぞれ x を用いて表しなさい。

(2) 線分 FG, BC の長さをそれぞれ求めなさい。

(3) AE = 20 cm のとき、x の値を求めなさい。

数学解答用紙

	1	
--	---	--

(1)		(2)	
(3)	×	(4)	人
(5)	通り	(6)	
(7)	cm ³	(8)	0

Γ	Ω
l	2

(1)	△ABF ∽	BF=	cm
	証明 △ABC と△AFD について		
(2)			
			終
(3)	BD= cm		

(解答用紙は裏面に続く)

I		

3 (1) 円 Aセット コーヒーの単品 (2) セット 杯 (3)x =, y =4 (1) C(a =(2)点 Q の x 座標は 5 (1) BE =EG =cmcm(2)FG =BC =cmcm

(3)

x =

数学解答用紙

1

(1)	$5+2\sqrt{2}$	(2)	9	
(3)	43 × 47	(4)	150	人
(5)	7 通	(6)	0.2	
(7)	24π cm	n ³ (8)	45	o

(1)~(2) 各 4 点 (3)~(8) 各 5 点 [38点]

_	
\circ	
٠,	
/ 1	

(1)	$\triangle ABF $	$\triangle ACD$	BF=	$\frac{24}{7}$	cm
(2)	証明 △ABC と△AFD について ÂBの円周角より ∠ACB=∠ADF ① ∠BAF=∠CADより ∠BAF+∠FAC=∠CAD+∠FAC したがって, ∠BAC=∠FAD ② ①と②より, 2組の角がそれぞれ等しいから △ABC ∞△AFD				
					終
(3)	BD =	8 cm			
(1) 5	点 (2)6点 (3)5	点 [16点]	-		

(解答用紙は裏面に続く)

受験番号	

3

$$(1) \qquad \qquad 400x + 300y \qquad \qquad \boxminus$$

Aセット (2)

100-x セット

コーヒーの単品 50 + x - y

杯

(3) x = 70

, y =

30

(1)5点 (2)6点 (3)5点 [16点]

4

(1)
$$C(2, 0)$$
 $a = \frac{1}{3}$

△APQの面積と△COPの面積が等しいから

 $\triangle APQ = \triangle COP$

 $\triangle APQ + \triangle AOP = \triangle COP + \triangle AOP$

したがって、 $\triangle AOQ = \triangle AOC$ である。

このとき、直線 AO と直線 CQ は平行である。

直線 CQ の式は 傾きが 3 で点 C(2, 0) を通るので、y=3x-6

点 Q は、この直線と関数 $y=\frac{1}{3}x^2$ のグラフとの交点であるから

$$\frac{1}{3}x^2 = 3x - 6$$
を解くと

$$x^2 - 9x + 18 = 0$$

$$(x-3)(x-6)=0$$

$$x = 3, 6$$

点 Q の x 座標は

3,

(1) 7点 (2) 7点 「14点]

5

(1)	BE =	5x - 15	cm	EG =	5 <i>x</i>	cm
(2)	FG =	15	cm	BC =	90	cm
(3)	x =	8				

(1)5点 (2)6点 (3)5点 [16点]